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1. INTRODUCTION

An I mpor tan 1, quafi t I ty of)t it I nab 1 1 "I' 44a te I I t Iii sa to! IlIl t e t rAck Ing (SST)

lio the line-or-sight accelerait!' n. The utilization of' thais quantity bh beef)

attractive to geophysicists especially because the line-of sight acceleration

can be expressed almost entirely In terms of the gradient of the disturbing

potential residual to a chosen reference gravity rfid. In previous reports and

papers, approximations were Introduced Into the line-of-night acceleration model

which transf'ormed the above qualifier "almost, entirely" Into "entirely", If

warranted, such approximationn art! or great practical value since they lead to

an efficient adjustment.

Having the Importance of a rigorous line-of-si'ht. acceleration model In

mind, we address the Issue of errors In the approximate model from both the-

itnalytIcal and the computational standpoints, thst latter via results of computer

tnimulations. The emphasis in this task i9 on SST In the high-low mode, it

concept that has grown popular among geophysicists as Is documented, e.g., by

Jekeli and (padhyny [(1900). These authors, as well aq Gleason (10913, envision

the "low" satellite as the space shuttle ('or' at satellite at the shuttle's

altitude), and the "high" satellite -is one (or more) or tpe OnS satellites, Due
to the great alt itude of the "high" satellie, thi. gradilent of the disturbing

potential residualI to a sufficiently detailed refereni' gravity field, such as

that represented by a (6,6) or an (8.8) sphericaliharmonic expansion, is

negligibly small at points along the "*high" orbit. Thin allows for at

simplification whereby the gradient of the disturbing potential may be

considered only at observation polintn along the "low" orbit. However, the

derivations In the present study will proceed without this aimpliflcation, which

will be Introduced only as it lnat fiterp.

The ensuing "lasit-ntep" formui it, develIoped late i, on H14 eqlju filn (31). 10i

written in thie rorm

Hfere and throughout, the notation 65 Inenlt ites it given (lant it y in a r'es dual

gravity field, i .e. , the difference' between thin quantity in the Actual., or

complete, gravity field (where iMs symbol hao no superscript) and the same



,piantJty as computed in a reference gravity field (where its sjymbol has the

;oipsrscrIpt c). Thus, we have

j p - residual lJne-of-olght acceleratc.,

where p is the line-of-sight acceleration in the complete gravity i'eld and pc

is its counterpart in the reference gravity field; and

6Xc~ xI

where, in the inertial coordinate system (X,Y,Z), 1 m(X1 ,Y1 ,Z1 ) is the

acceleration vector of the first (low) satellite in the complete gravity field

and i s Its counterpart in the reference gravity field: in addition, e c is

the line-of-night unit vector as computed in the reference gravity field.

In following the derivation presented in [HaJela, 1978). Gleason (1991]

Introduces the approximations alluded to earlier, and obtains the result

corresponding to the above "last-step" formula with the dots removed (cf.

equation 3, ibid.):
~ c .

/e

Thin outcome is reached also by Jekeli and Upadhyay [19901, whose derivation

agr.es with that in [Rummel, 1900). Thus, all four references Just mentioned

arrive at the same approximate model. Gleason (1991] uses it in the

intermediate form (implied by equations 3 and 10, Ibid.,

'1P - -. ec

wherv ,/T(X,Y,Z) Is the gradient, expressed In Inertial coordinates, of the

disturblng potential at the location of the "low" satellite. From the known

time t associated with 3p, he then expresses vT in earth-fixed polar

coordinates. Upon computing a priori covarlances as needed for the collocation

Ojtiustment model, he uses the latter to obtain an optimal solution for a set of

6 , the mean radial components of the surface gravity disturbances.

Clearly, the accuracy of the results from simulated observations as in

[Gleatson, 19011, and, especially, the accuracy of the gravity-field

rdetermlinvtion where the observables are actual line-of-sight accelerations

hijngis on the accuracy of the mathematical model. In order to design a rigorous

procedur,. ror adjusting such accelerations, one has to express the form of, and

., 2



valitate the effect of, the terms represented by the dots In the "last-step"

formula presented'at the otset. Some, perhaps most, of these terms may be

!eglgible in general. Others may be negligible upon certain restrictions (on

the time Interval between the epoch of observation and the epoch at which the,

,;tate vector Is given, on the minimal degree and order of the reference gravity

field, etc.). However. if there exists a term thrt cannot be made negligibly

9mall, preferably much smaller than 0.1 mgal characterizing the magnitude of the

noise in an electronically-induced signal, this term should be a part of the

mathematical model. In theory, It should then be taken into account in the

'formaion of observation equations, a priori covariances, etc.

Some of the results presented by Gleason (199IJ Indicate that not all of

the terms represented by the dots (discussed above) are negligible. When he

attributed zero errors to observables simulated in one-second intervals within

a 10-squaro equatorial oceanic area, he recovered the "ground truth" in 10

4quares with no better than a I. megal r m.s, error and a 3.8 mgal maximum error

(worse results wore obtained for lower observational density), In performing

c-omparable simulations over a larger (i5*x20*) and geophysically less tranquil

continental area, he arrived Instead at a I1 mgal rm s. error and a 6.0 mgal

maximum error. It Is likely that the cited errore are imputable to the above

modeling approximations, especially upon considering the magnification of errors

cauised by the downward-continuation problem. Therein lies the motivation for a

u'rvlnement of the traditional line-of-sight acceleration model,

The present study concentrates on the development of the mathematical model

rigorous to within the first-order differential quantities, Two second-order

differential quantities will appear (temporarily) incidental to the derivations,

while further second- and higher-order differential quantities will be mentionefd

without being expressed explicitly. Although the "last-step" formula implies

the ilmplifieation whereby the position vector, the velocity vector, and the

acceleration vector of the "high" satellite in the complete gravity field are

e-qual to their counterparts computed in the reference gravity field, this

'sAmplficatJon will be uned neither In the derivations nor in the simulations.

The simulations will encrompans two "low" arcs passing over the above-mentioned

ocennic area, each limited to three minutes in duration from the epoch of a

glven state vector. The second are will be used In conjunction with the

r eference fields represented by (6,0), (8,B), and (10,10) spherical-hArmonic

7-41



expansions, whereas for the first arc we will consider only the (8,0) reference

field, The simulations will serve not only for the verification of the derived

mathematical model, but also for the assessment and possible simplifications of

this model in view of a sufficiently rigorous, yet computationally manageable

adjiustment of the lJne-of-sight accelerations in the high-low mode.

As a historical note, the first part of this report (Chapters 2 - 5) was

presented In a similar form In a OL (AFSC) internal paper, "Satelllte-to-

Satellite Tracking in the High-Low Mode: Line-of-Sight Acceleration in a

Residual Gravity Field", April 1990. Two months later, a OL scientist, Mr.

David M, Gleason, supplied the author with computer simulations supporting the

theoretical findings. An expanded version of the paper including a summary of

the computer simulations was published as the author's Status Report No. 5 under

the present contract, period 4 April 1990 -3 July 1990. A year later, another

P1, (formerly OL) scientist, Dr. Christopher Jekeli, derived an equivalent

algebraic result for 8p by taking a formal differential of p. However, the form

of this result Is not considered final. A similar derivation Is presented in

the Appendix herein, where the differential is transformed with the aid of

relations, from Chapters 3 and 5 into the final formula of Chapter 5 (the general

verslon before the last-step simplification). The Appendix Is Instructive in

Sc'nfirmilng the main outcome of Chapter 5 via a semi-independent route, shorter

ovraII thain the route of Chapters 2 5. Other points of discusslon are

presenimld in the Appendix Itself.

4
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2. GEOMETRIC QUANTITIES IN THE COMPLETE GRAVITY FIELD

The notation In this analysis Js adopted for the most part from (Rummel,

1060], Thus, the inertial axes nre denoted by the letters X, Y, and Z, as are

the antnllte coordinates; the latter are attributed the subscript I for the,

first satellite (here low), and the subscript 2 tor the second satellite (here

high). The first-order time derivative Is identified by a dot, and the second-

order time derivative, by a double dot. Accordingly, the basic symbolism Is

preisented at, rollow,#.

Sat ,~ 2: X Y Z

112 " 2P 2P 2) 2 2 # 2 2)'i2 k2 ' '2 '2 )

As will become apparent, the development is Identical whether the low-low or tile

aimmificistion that will result In equations (31)-(32d).

The quantites that may be subject to observation, separately or in

combinntlon, oire

p .. , J Ine-of-might ranee:

dp/dt .. . line-or-sighit velocity (or range rate); and

2 2
p dp/dt (I p/dt . line-of-'wight acceleration.

All of' the abovo iiymbolism Implies the complete (unabridged) gravity field,

Tfhe prenont analyfis is concerned with p, especially In view of expressing the

la~tter in a retsidiial grawvity fieldI. The line-of-alght range is given by

1/2 a 1 2 i(2)

which In used Ina forming e, the unit vector in the direction Sat. I gat, 2:

X' 12 '(3)



2
The notation such as X_2 is avoided here; instead, this quantity would be-22

written as X2. 1 12 . A similar statement applies with regard to any

other vector.

The time derivative of p follows from (2) as

-1

pp -12* -12

or

pI i X *e (4)

Equation (3) yields the time-derivative of e:

(dp 1 /dt) X --I i P-2 -I
-12 p -12 1 p 2 + p -12

or

-p(x_ 2 - p e) (5)

We notice that ee=O so that the vector e is perpendicular to e. From (4)

it follows that

p - X * 2X e (6a)
P -12'- -12" - ,,

which, due to (5) and (4), becomes

P = .12'2 + P-i(1.1212 _ 2)

As a matter of interest, (6b) can be given in an alternate form. III writ in

x = x+ 1,-12 -12')e -"12,n 12 n

where. X12,n is the component of-12 perpendicular to e, we have

; 2 " k *' = ;2 • 2
-12 -12 -12 -12,n

and (6b) can be presented as

p =-12e I2 n2 n (

t -2,n



3. GEOMETRIC QUANTITIES IN A RESIDUAL GRAVITY FIELD

We now introduce a reference field and denote the quantities computed in it

by a superscript c, such as in X X, X X ' X and
1 -1 1 -2 -2 2

C C C C C C C C C
-12 -2 -l -12 -2 -1 -12 -2 - i7)

In analogy to (2) and (3), one has

c (Xc c 1/2

pC -12 -12

c (C)-I x 9
e -(pC) XI (9)

-12

Precisely the same procedure that resulted in (4), but carried out in the

reference field, yields

Xl2 . e C(9 )

{C *C " 'c '

For the "high" satellite, it is usual to adopt X CX 2 , X =X and X2=X, but
-2-2' -2 -2' -2 -2

here this simplification will be left for the very end. In differencing (4) and

(9'), we obtain

* C *c C
p X1 2 .e ' (10);' = 2 - -12-

The difference on the left-hand side of (10), which owes its existence to

the residual gravity field, is symbolized by 6 P:

6P P - PC(1

This quantity is called the residual line-of sight velocity. In order to bring

(10) to a convenient form, on(e makes the following approximation

C

e - e (12)

Thus, (10) is written is

C

w~e 1X f*e1

(5 .(14)
12 12 - 12

Although the symbol z has been replaced in (13) by , the approx imation present

in (13) should be kept in mind.



In a similar vein, the procedure that resulted in (6b), but carried out in

the reference field, gives

c C = .c *ec c (,- 1*,c 2 *c 2
S-,12.e + (p)-[x121 - (Pc)2] (15)

In subtracting this equation from (6b), and introducing an additional

approximation akin to (12), namely

P Pcc (15')

we obtain

6 2 .eC c 1p ) 4 1[ 2 - I k,2 1 2 - 2 + ( C)21 ,(16)

12t e + (Pc)-[• 2 .12 .

where

6' ~cC
8P p P -k12 -12 -1 l2

The quantity 6p is the residual line-of-sight acceleration. Working in terms of
c cet.,rtr
e c etc., rather than in terms of e, p, etc., has the practical advantage in

that the reference field is known and allows for the actual computation of such

quantities. We re-write (16) as
c c -1I

&P ec12. + (pc) T (T16')

where 6T represc- the quantity inside the brackets of (16):

2 c 2 2 ( c)2IX212 -I~2I 1"6T(1)

At a later stage, the approximations (12) and (15') will be removed in order to

obtain results rigorous to the first order, i.e., to within the first

differentials. Corrections due to both approximations will affect (16) and

(16') directly; subsequently, a correction due to (12) will affect 6T via (13).



4. REFORMULATION i THE RESIDUAL LINE-OF-SIGHT ACCELERATION

We consider the vector 6X from (14), which can be written in several-12

forms:

5c k *c C'
12 -12 -12 -2 -1 -2 -1

-2 -2 -1 - 2 -6 17)

where the last two symbols have been introduced as

6R k - *c . *-k -

1 -1 -1 -2 -2 -2

In returning to the formalism of (14). we have

6 2 *c c ! -1 2 2_ c *c 2
12 12 -12 -2 -12 12 12 -12 -12

and, accordingly,

2 2 c *c ,2
-12 2 12 -12 -1 2 '

If this expression is substituted into Cm"). it follows that

2 c *c 2 *2 c2
&T = )A_12'! - 12*-12 -2 12) P )

or, upon recalling (14) and the fact that ki2 2 .2 :
• 21c 2 c 2

6T 1 x 2 + 2X *a - p , (pc) (18)
-12 -12 -12

We first denote the last two terms in (18) by 6K, and express them as

_ 2 , c 2 _ , *c
6K p ( ) P ( )(p

From (11), the first factor on the right-hand side is 6p and the second factor

is 6P+2p c
, yielding

"*
Upon adopting p from (9) and 6p from (13), which contains the approximatior

alluded to ear lier, it follows that

.2 *c C *c c
6K 6 2(X 12 )(Ox 2_e (19)-1 - -12 "



Next, we decompose the vector X12 into two constituents, the first along

e cand the second normal to it (identified by the subscript n):

6i12 (12-)t + 6i-12,n

The dot product of this equation with yields

c ' 6c ec )(6i 'e c  + c *6X
-12 -12 -12 - -12 - -12 -12,n

of which the first term on the right-hand side is needed in (19). The latter

then reads

.2 c 1 2  c " I ,6K -6p 2 - -2X 21--

-12 -12 -12' 12,n

and (18) becomes

6T = 161 2 _ *2+ 2i c* (20)
'-12' ~5 12 -12,n

With this quantity substituted into (16'), the residual line-of-sight

acceleration is presented as

6p X *c (c -1 2 - 2 +X 6 ).(1
-p = _X12 f (p)_ 12 6 + -12 *-12, n

This result is only intermediate, since it does not account for the effect of

6X12=12 - c12 considered below. Moreover, it contains two terms (the first

two terms inside the last parentheses) corresponding to second order

differentials, which subsequently will be neglected.

10



5. RESULTS RIGOROUS TO THE FIRST ORDER

To correct two out of three approximations implied in the preceding

development, we return to equation (16) and observe that it was obtained from

(6b) and (15) upon adding the following expression to (6b):

2 c  X e1 2 * + (Pc) 1  2 _ 2 - 2 2

Accordingly, the correction (i.e., minus the above expression) is

X]2.6e + 6pQ( 12 12 *2) (22)

where the first term is due to (12), and the second term is due to (15').

Upon consulting (2), one forms

6p 6X 12 *e , (23a)

6p -p -X12,e (23b)

With the aid of (23b), the differential of (3) is obtained as

6e p [_X12 - (_x 12,e)e ]

where (3) has also served in a substitution. Since the second term inside the

brackets is the vector 6X12 projected onto e, it follows that

6e = p 1-6Xl 2, n (24)

where the subscript n indicates the direction normal to e. We recall that
cfollowing (19), n indicated the direction Pormal to e However, this

difference in interpretation is of little consequence at the present stage.

In particular, the quantities e, p, etc. in (22) (24) can be replaced at will

C c
by e p , etc.. since such approximations introduce errors corresponding only

to second- and higher-order differentials. These replacements will henceforth

be made without further mention.

Next, with the aid of (4) we develop the last factor in (22):

2 2 2 k- 1 ) 2 .
p12 -12 -12 2.e (25a)

Since X12 can be decomposed into two orthogonal constituents in a familiar

manner as

11



kX =(X *e e.-12 -12 - _'12,n

it follows that

-12 -12 -12 12 -12.n

and (25a) becomes

- 1 2 -12 12,n (25b)

The first term In (22), which owes its existence to (12), is denoted c and the

second term in (22), which is due to (15'), is denoted c3. With the aid of (24)

and (25b) together with (23b). we write

(C)- X 6X (26a)= 2 ( _12. -12,n

. -- (p.) (X .)(X *k 2 ) (26b)
3  12 -12

An additional correction, denoted c4 , is due to the substitution of Sp

from (13) into 6K In (19), which entails the approximation (12). In particular,

in obtaining (19) we have replaced the rigorous value of 6p from (10) by the

expression in (13), i.e., have deformed 6 p by

k *e', - X ,*e
-_12"e - -12" -

Accordingly, the correction for 6p will be

-12 6ee

From the relation preceding (19) it is apparent that the correction for 6K and

thus also for 6T will be

2 -_12.L

and from (16') it follows that the correction for 6p will be

-2(p ) p c X .6

In consulting (24). we finally deduce that

C4  2(pc) 2 c .c (27)
4 12"-12,n

12



We are now in a position to formulate the final version of 8p, rigoroub to

within the first differentials. In returning to (21), we discard the terms

which are essentially second-order quantities, as was mentioned earlier.

(Consistent with this fact, Hajela [1978), Rummel [1980], and Jekeli and

Upadhyay [1990] show that the above expression is negligible.) Clearly, all

the other second- and higher-order differential quantities generated by the

replacements described following equztion (24) are neglected as well. Before

transcribing (21) with the corrections c2, c3 , and c4 included, we present the

identity
* *c

-12 *M12,n -12.n -X12 (28)

which shows that the index n can be shifted from one constituent to the other.

This fact, easy to verify, applies in conjunction with general vectors, ndt only

those shown in (28); here It will be used also for c2 in (26a) and c4 In (27).

What remains of the second term In (21) will be denoted as c1 , and will be

transcribed as indicated In (28). In conjunction with c3 in (26b), we will use

the identity

*c .c *c *c =Ic 1
2  (23)

12"12,n = 1 2 .n 1 2 ,n 2,n

which again holds true for general vectors.

In transcribing and completing (21) according to the above, we have

6p = .12 .ec + c1 + c2 + c3 + c4 , (29)'

where the first-order corrections are

t-1 .c ,*(6a

c2 (pc) I --cc1 = 2(p 12,n X12 (30a)

• 1
, ( -1 *Ec 2 (30b)

"2 "~' -2,n-1

= _(-c 2 'c2 " , (30c)
C 3 P 1i12,n' e - 12 (0

c 2(p-2 c 12.n6X (30d)
4 2() -12,n -12

13



Since, in practice, the reference field is sufficient for an accurate

description of the position, velocity, and acceleration of the "high" satellite,

it is permissible to adopt

-12 -l12 -l -x12 -l

In this case, the formula (29), (30a-d) simplifies to read

c

65p= -X,-t + ci + c2 + c3 + C, (31)

where the first-order corrections are

ci= -2(p ) Xc * A (32a)
_12,n -1

c -l c
-( = X( 1,* 6X (32b)

-12,n -

c 2 *c 2

= 2(pc) p 12n &6XI (32d)

14



6. SIMULATED RESIDUAL LINE-OF-SIGHT ACCELERATIONS.

AND ASSESSMENT OF THEIR MODELING

The simulations in this study involve two arcs of the "low" satellite

generated by Gleason (19911. The first arc herein is, in fact, the very first

of 143 generated arcs entering the 10-square equatorial oceanic area bordered

by the lines of 5' E, W, N, and S. And the second arc herein is the arc

associated with the greatest modeling errors among the 143 arcs; below we refer

to it as the "worst" arc. The "low" satellite, denoted Sat. 1. emulates a

typical space shuttle orbit of approximately 300 km altitude, while the "high"

satellite, denoted Sat. 2, emulates one of the GPS satellites of approximately

20,189 km altitude. Among the GPS satellites, the one chosen for simulations of

the residual line-of-sight accelerations is the one which has a minimal zenith

distance with respect to the "low" satellite. In [Gleason, 1991] the average of

such minimum distances is reported to be 28*. Although the duration of the

"low" arcs over the oceanic region of interest is two minutes or less, the two

arcs serving in the present study are extended to 181 s. Gleason [19911 uses

Rapp's 1981 geopotential coefficients through harmonic degree and order

(180,180) to describe a field, which he calls "true". approximating the complete

gravity field of the earth, while for the reference gravity field he chooses a

(6,6) subset of these coefficients.

The mathematical model for the residual line-of-sight acceleration is (29).

(30a-d). The above first arc serves mainly for the determination of the step

size used in the Hamming orbit generator, which would Vield the time--derivatives

with sufficient accuracy for any epoch within three minutes from the epoch of

the state-vector. Although in [Gleason, 1991] the step size is one second, here

three step sizes have been tested: At -l s, At=0.1 s, and At 0.0l s. At a

desired epoch, the time-derivative is computed hy

[value(epoch+At) - value(epoch At)]!2At

The step size At-1 s is deemed too coarse for the precise calculations

needed in the model verification. In particular, errors in bp have been found

to range from 0.04 mgal to 0.18 mgal for epochs ranging from 2 s to 179 s from

the state-vector epoch. The step size At=0.1 s reduces the magnitude of these
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errors by over 00%. To produce results accurate to 0.001 mgal or better,

At0.01 a is adopted. The step-size errors affect the "true" p and the first

term on the right-hand side of (29), called "basic term", by approximately the

same amount. Thus, the error of the basic-term modeling (I.e., the difference

between the basic term and 6p), as well as the error of a more complete

modeling, are affected by the step-size errors to a much lesser degree than

0.001 mgal, perhaps by two or more orders of magnitude. We conclude that for

the modeling-error analysis, the step size R-0.01 s Is entirely satisfactory.

- With this step size and a (8,6) reference field, the values of 6p on the

first arc have been generated In four intervals from the state-vector epoch:

2 a, 60 a, 120 s, and 179 s. These four epochs will be used throughout the

analysis. The simulated values of 6p at these epochs are

-2.883 , -3.378 , -1.697 , 3,782

the units being milligals. The corresponding values of the basic term differ

from the p values by the amounts, called errors, which are listed (in mgal) as

0.002 , 0.016 , -0.043 , -0.142 . (33a)

When the term c1 Is Included, the errors decrease substantially:

-0,0004 , -0.0009 0.0011 (33b)

FJnally, when also the terms c2, c3, and c4 are included, the errors become

-0.000005 , 0,000003 , 0.000002 1 (33c)

The notation "--" indicates ccmpletely negligible amounts. Already at this

early stage, the validity of the mathematical model (29), (30a-d) is confirmed.

The small remaining errors displayed In (33c) stem partly from neglecting the

second- and higher-order differentials, and partly from the step-size errors;

the round-off errors are negligible here (with the double-precision arithmetic).

4i At a state-vector epoch the errors are zero, since the position vector

and tile velocity vector A In the complete gravity field are equal to their

coutnterparts I, the reference field by construction (For the "high" satellite

this equality holds true, or nearly true, also at epochs different from the

state-vector epoch.) Accordingly, at a state-vector epoch we have
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12 a412 -12 -12

whIch implies that

-LX12 -12

C c

Thus;" all four corrective terms c1 through c in (29), as well as all second-

aiid higher-order differential terrs, are zero, and the basic term supplies the

rigorous valoe at any epoch where the state-vector is given, The main question

to be answered is: How far from the state-vector epoch is the basic term

accurate enough to represent alone an acceptable mathematical model?

In considering the first arc, and requiring the modeling accuracy to be at

least 0.1 mgal, we observe from (33a) the basic terms alone would be acceptable

for epochs separated by nearly three minutes from the state-vector epoch.

However, the situation depicted by the first arc is overly optimistic. If we

consider instead the "worst" arc In the same context, ie., with a 0,01 a step

size and a (6,0) reference field, in lieu of (33a) we obtain

0,010 1 0,260 0,386 0,545 (34)

Since the pertinent oceanic area is geophysically tranquil, the relatively large

errors In (34) may be the norm for many other eeglons, Equation (34) indicates

that the basic term alone could represent a (marginally) acceptable model only

In the case of observational epochs closer to the state-vector epoch than 30 s.

We now present In detail the results that culminated In (34). This will

confirm, once again, the validity of the model (29), (30a-d), and suggest a

atmplified residual line-of-sight model, although not as simple as the basic

term alone. We recall that the step size is 0,01 s, the "true" gravity field

ta given by (180,180) spherical-harmonic coefficients, the reference field Is

given by the (6,6) subset of these coefficient, and the results are listed In

mJl]gals,. Two additional groups of results will be presented, corresponding

to (8,8) and (10,10) reference gravity fields, As peripheral Information, we

list the values of 6p for the three reference fields as obtained for tho usual

four epochs (2 a, 60 s, 120 s, and 179 s from the state-vector epoch):
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(6,6) ..... 2.607 -2.000 0.417 , 2.038

(8,8) ..... 3.077 , -0.423 , 3.314 6.191

(10,10) ..... -0.530 -5.069 , -1.788 1.130

These values do not reveal any clearcut pattern, or significant differences in

magnitude, which would single out one reference field in preference to another.

In proceeding in detail with the (6,6) reference gravity field, we will

list all the results to six decimals. The term c1 will be presented separately,

while the terms c2 , c3 , and c4 , which all depend on 6X 12 will be combined into

the term c2+ c3 +c4. For the sake of interest, a term containing the second-

order differential quantities seen in (21) will also be listed, written as (z):

W = (PC)-l X1212 W2 )

Clearly, this term accounts only for some second- and higher-order differential

quantities. Its listing will illustrate that it is negligibly small, as already

transpired from f(Hajela, 1978], [Rummel, 1980], and (Jekeli and Upadhyay, 1990].

The g,,idance to the four groups of results associated with the "worst" arc

is as follows. Above each group is listed the time interval from the state-

vector epoch (2 s, 60 s, 120 s, or 179 s), together with the corresponding value

of 6p (see also the preceding outcome for the 6.6 reference field, where these

values are shown to three decimals). Each group proper begins with the line

headed "individual terms", where the first item is the basic term, the second

item is the term c1 , the third item is the combined term c2 +c3 +c4 and the

fourth item is (z). The next line is headed "modeled p", where the model is

presented in a cumulative fashion; the first item is the repetition of the basic

term, the second item is [basic term + c1 ], and the third and last item is

[basic term + c1 + (c2 +c3 + c 4)], i.e., the complete right-hand side of (29).

(The value in the second or the third item is found as the value in the

preceding item on the same line plus the value just above the desired item.)

Finally, the third line is headed "remaining errors", and it contains the errors

in the values representing "modeled 6p" of the second line. (Each of the three

items on the third line is computed as the value just above it minus the value

6p listed above the first line.) All values are rounded-off to six decimals.
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The four groups of results are listed below.

2 s ..... 5p 2.607035

basic term C
1  

2 C 13' C4 (Z)

individual terms: 2.616992 .0.009953 -0.000004 ( --

modeled 6p: 2.616992 2.607039 2.607036

remaining errors: 0.009957 0.000005 0.000001 (35a)

60 s . ..... 6p =  -2.000465

basic term cI  c2 C3+c4 (z)

individual terms: -1.731951 -0.265731 .0.002781 (0.000001)

modeled 6p: --1.731951 -1.997682 -2.000463

remaining errors: 0.268514 0.002783 0.000002 (35b)

120 s 6p = 0.416935

basic term c c2 +c 3 +c (z)

individual terms: 0.803185 -0,378171 -0.008090 (0.000004)

modeled 6p: 0.803185 0.425013 0.416924

remaining errors: 0.386250 0.008078 0,000012 (35c)

179 s ..... bp = 2.037552

basic term C c 2 +C3 c4  (Z)

individual terms: 2.582464 -0.530705 -0.014204 (-0.000001)

modeled 6p: 2.582464 2.051759 2.037555

remaining errors: 0.544912 0.014207 0.000003 (35d)
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For the sake of interest, we list the six state-vector components (in

inertial coordinates) at the epoch 179 s for the "low" satellite, followed by

the six state-vector components at the same epoch for the "high" satellite, both

state-vectors having been generated in th, "true" field; the position components

are given in meters. and the velocity components are given In meters per second.

Sat. I: X 695,616 623 Y 6,628.710.831 Z -190,943.856

k -6,772.261608 ' 612.09838 Z = -3,683.667565

Sat. 2: X 10,970,235.262 Y = 22,255,878-282 Z = -9,466,691.250

= -1,651.398895 2,029.425766 , 7 2,857.380367

Accordingly, at this epoch we have IX1 1=6,667,844 m, i.e., the altitude of the

first satellite is about 290 km; and IX 226,557,267 m, i.e., the altitude of

the second satellite is about 20,180 km. For the first satellite, the component

differences 8X and 5,X are

-0.081 -0.450 -0.743 ; 0.000370 -0.004181 -0.007800

The first three values reveal that ;6XlJ=0.872 m. For the second satellite the

component differences are essentially zero (they are 0.000001 and -0.000001 in

X and Y, respectively, smaller otherwise), This is consistent, for example,

with the statement that followed equation (30d).

The error values in (35a-d) warrant a discussion. We begin with the third

item in each of the lines (35a-d), i.e., with the error remaining in the

expression [basic term c + (c2+c 3 +c4 )]. This error is exceedingly small for

all four epochs, confirming the theoretical formula and indicating that the

second- and higher-order differentials are negligible within three minutes from

the state-vector epoch (and probably much beyond three minutes), that the step-

size errors are inconsequential, and that the orbital simulations are flawless.

In fact, the reliability and accuracy of the orbit-generating program perfected

by Gleason [1991] is verified here in an independent and interactive fashion

(interactive in the sense of high-low satellites, high-low order gravity

fields). In continuing with the second item, i.e., with the error remaining in

the expression [basic term +c I, we note that this error is at or below the

level of 0.01 mgal for all four epochs. Thus, the corrective term cI is

sufficient to extend the validity of the basic term to three minutes from the
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state-vector epoch, and much beyond three minutes if one is willing to accept

modeling errors on the order of 0.1 mgal. Finally, the first item, i.(., the

error in tie basic term, indicates that the model comprising the basic term

alone introduces inadmissible errors already within a few tens of seconds from

tle state-vector epoch, even if one tolerates the modeling error of 0.1 mgal.

Faced with the unacceptability of the basic term for accurate modeling of

tile line-of-sight accelerations in the gravity field residual to a (6,6)

reference field, one is compelled to ask whether a reference field higher than

(6,6) could at least partly remedy this shortcoming. Accordingly, two

additional computer runs have been analyzed, utilizing an (p.8) and a (10,10)

reference field. First of all, we remark that the errors in the model [basic

term 4 c 1 + (c 2+c 3+c 4)] are again exceedingly small, listed as

(8,8) ..... 0.000005 0.000001 0.000007

(10,10) .... 0.000006 0.000003 . -0.000002, 0.000005

There is no essential difference between these errors and the errors presented

above for a (6,6) reference gravity field.

Next, we present tile errors of the basic term in conjunction with these

reference fields, again for the four chosen epochs (2 s, 60 s, 120 s, 179 s)

We enhance the usefulness of the results by adding also the errors of the model

[basic term + cll, in parentheses. These two kinds of errors are listed below

to three decimals. For the sake of completeness, the errors presented earlier

for a (6,6) reference field (see equations 35a-d) are recapitulated using the

same format:

(6,6) ...... 0.010 ( ) 0.269 (0.003) 0.386 (0.008) 0.545 (0.014)

(8,8) ..... 0.005 (--) 0.108 (0.002) 0.046 (0.005) 0(041 (0.010)

(10,10) .... 0.008 (- ) 0.188 (0.001) 0.166 (0.001) (162 ( )

Although we notice Improvements in the basic term in conjunction with higher

order reference fields (as compared to the 6,6 field), the improvements are not

monotonoits . For example, the error of 0. 386 mga 1 for I the (6, 6) r-eferenc e f i eId

improves to 0.046 mgal for the (8,8) reference field, but then it grows to 0 166

mgal for the (10,10) reference field.

21



From the above results it appears that a re'atively high-order reference

gravity field would have to be utilized to substantially lower the error level

of the basic term, if this is indeed possible. As another attempt to make the

errors in the basic term acceptable, one could lower the time interval between

the state-vector epoch and any observational epoch to, e.g., less than 30 s.

(Although In the case of the 8,8 reference field the errors in the basic term

are seen to decrease beyond the epoch 60 s, this feature is exceptional as is

gleaned from the results for the 10,10 and, especially the 6,6 reference field.)

Both these possibilities, whether exploited separately or in combination, would

limit the practical usefulness of the mathematical model represented by the

basic term alone. Moreover, such a model would still suffer from poor or

marginal accuracy.

We conclude the simulation analysis by mentioning that due to computer

limitations, one is naturally concerned about the possibility that the simulated

errors may be overly optimistic. This possibility stems from the fact that the

"true" gravity field has been associated here with a (180,180) field rather than

with a (360,360) or a more detailed field. However, we alleviate such concerns

by presenting the errors corresponding to a f.C) ;eference field (as used

earlier) and to a mere (60,60) "tr,,:" field:

0.010 (--) , 0.26G (0.0031 0.380 (0.008) 0.538 (0.014)

While 6p at any of the four epochs has changed by 0.2 mgal or less between tho

(60,60) and (180,180) "true" fields, the errors in the basic term are seen to

have changed by 0.007 mgal or less, and the errors in [basic term + c I are seen

to be unchanged. By far, most of the change in the residual line-of-sight

acceleration due to the change in the "true" field is absorbed by the basic

term. These considerations, extrapolated to more detailed "true" fields,

indicate that the simulated error analysis is likely to be valid with sufficient

accuracy also in the actual gravity field of the earth
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7. RECOMMENDATIONS FOR RESIDUAL LINE-OF-SIGHT ACCELERATTON MODELING

Guided by the above results and considerations, we envision a manageable,

yet accurate mathematical model represented by [basic term + c ]. We have seenI

that to within three minutes from the state-vector epoch, and probably much

beyond three minutes, the errors in such a model are negligible even for a (6,6)

referencc gravity field. Two avenues open quite naturally before us. The first

is to use the term c I as a fAlly equivalent partner of the basic term in the

model, involved in the formation of the design matrix for the collocation

adjustment, of a priori covariances, etc.

The second avenue is much simpler and much more efficient. In consulting

the detailed results listed in conjunction with the (6,6) reference gravity

field, we observe that for the most part the term c1 is significantly smaller

than the basic term. This is all the more so for shorter time intervals from

the state-vector epoch, and for higher-order reference fields. Thus. under

certain stipulations (which should he subject to further ests, including tests

covering additional regions of the globe), the term c I could be treated not as

a full partner of the basic term, but merely as a small observational correction

separate from the model. This conceptual simplification is far-reachiig. It

makes it possible to revert to the basic term as a highly efficient mathematical

model for the residual line-of-sight accelerations by overcoming the initial

shortcoming of this model, the low accuracy.

The crucial aspect of this approach is the computation of the correction

c1 . In practice, c1 can be approximated by the same procedure that has been

used in this analysis. The true gravity field can be approximated, e.g., by a

(180,180) field, and the satellite orbits in question can be approximated by

simulated orbits sufficiently close to their triue counterparts. When necessary,

the approximating orbits can be rectified (to correct for their drift, in time.

with respect to the true orbits). The step size can be lowered to 0.1 s. etc.

(for better accuracy), but only in the immediate vicinity of the obsei'ational

epoch; elsewhere the step size can be much coarser in analogy to the technique

utilized by Gleason [1991].

Akin to a previous, concern ahout the validity of error analysis using a

truncated representation of the gravity field, one may now be concerned about

the accuracy of cI computed in such a representat ion. It is assumed that the
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spherical-harmonic coefficients providing this representation are reasonably

accurate. An example using a (60,60) set of coefficients versus a (180,180)

set, where the former is a subset of the latter, again helps to alleviate such

concerns. in writing C computed with a (60.60) truncated field in brackets,

and -in writing c1 computed with a (180,180) "control" field in braces, we have

for the usual four epochs:

[-0.010](-0.010), f-0.266](-0.266), [-0.372]{-0.378), [-0.524](-0.5311.

Accordingly, for an observational epoch separated by three minutes from the

state-vector epoch, the effect of the indicated truncation generates a mere

0.007 mgal difference in the value of c1 , corresponding to the outcome seen at

the close of the preceding section. We reiterate that by far, most of the

change in the residual line-of-sight acceleration is absorbed by the basic term.

This behavior of the basic term further supports the concept of using c1 as an

observational correction computed in a reasonably detailed and reasonably

accurate "true" gravity field.

In the above setup, an approximation to the true correction c1 can be

obtained according to (30a) or. in practice, according to (32a). In principle,

the suggested approach uses an "adjoint model" (operating on assumed satellite

orbits in conjunction with an assumed gravit field) alongside the "true model"

(operating on the actual satellite orbits governed by the actual gravity field),

but only insofar as the correction c1 is concerned. The advantage of this

approach, based on the In-practice ascertainable smallness of c1 relative to the

basic term. is substantial. Due to c1 being considered as an observational

* correction, the need for its treatment In view of the design matrix, of a priori

covariances, etc., is eliminated.
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8. CONCLUSION

In theJflrst part of this study, the residual line-of-sight acceleration

for a general satellite configuration is developed rigorous to within the first-

order differentials. In addition to the usual "basic term" treated in

geophysical literature, two kinds of corrective terms are derived: the term c

(related to satellite velocities) and the combined term c2 +c3 +c4 (related to

satellite positions). Subsequently, the general formulation is specialized for

a high--low configuration. In this case, the term c1 depends essentially on the

residual velocity vector of the "low" satellite at the epoch of observation, and

the term (c2 +c3+c4 ) depends essentially on the residual position vector of the

same satellite at the same epoch. The above qualifier "residual" implies the

difference between a vector expressed in the complete gravity field and its

counterpart obtained in the reference gravity field.

In the latter part of the study, the analysis of computer simulations for

a high-low configuration confirms the first-order general formula (devoid of

approximations involving the "high" satellite). In all cases examined (two arcs

of up to three minutes in duration, three different reference gravity fields),

the first-order results agree with the known "true" values, obtained with the

step size At=0.01 s, to within 0.00001 mgal. The analysis clearly Indicates

that the basic term lacks the accuracy to represent alone a valid mathematical

model: in one realistic simulation Its error surpasses 0.5 mgal. However, when

this term is corrected by c1 . its accuracy improves significantly, attaining the

level ofr0.01 mgal or better. Thus, the term (c2 +c3 +c4 ) as well as all of the

higher-order differentials can safely be neglected in practice. As a further

possible simplification, it is recommended that the term cI be considered merely

as an observational correction In the subsequent (collocation) adjustment,

computed in tn "adjoint model" where the true gravity field and the true

satellite orbits are substituted for by their sufficiently accurate and easily

manageable approximations.
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APPENDIX

ALGEBRAIC DERIVATION AND A USEFUL TRANSFORMATION

OF THE FORMULA GIVING THE RESIDUAL LINE-OF-SIGHT ACCELERATION

To find the formal differential of the line-of-sight acceleration, we first

recapitulate the standard relations (2). (3), (4), and (6b):

-21P X12 -12 *e

P = X12 I*e + = p1 (I212 2 -

"
2

2 .2
In forming the differential 6p of p, use is made of 6p, 61X 12 1 and 6p

1/'2 -1
6p = 6'1.X = (1/2)1X 1 21 2X 12* X12 = *6X12

-1212 ( 12. 12- - 212. 12

6P ~2 p -2pb -12' 2 12 e

We now readily deduce

6p 6X. 6t, - P2 e'6X2(I 2 - )- 2t 12 -m- - - 2 1
+ p 1[2k 1 2 .6A 1 2  2p(6X1 2 * 11 k26)

where
-2 -1 -1 -2(

-e. = p p 12 P -2 P p  12 - P (eSX12)X12

Since the differential .p pertains to the reference field identified by the

superscript c, all finite quantities above are attributed this superscript:

c c e C -2 c .c 2 )2
a 6 . + 12.6e _- (p ) .6 2[IX11 _ ( c )

-212 2 12 -12

c~~ -1' * C
+ (pC)- [2k . 2p (eC.6X . .*e)J (A.1)

1 2 -12 12 +  12

where

_e - (pC)-1 6X12 (PC)-2 (eC -X2 )X2 (A.2)-12 1 1

The formulation (A.1,2) is not very insightful or easily tractable. Moreover.
c

we wish to present 'p in a form where the "basic term" 6X 12.e is followed by
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the most important of the remaining terms. The analysis of Chapter 6 indicates

that such a term contains 6X12'

In the general formula (29). (30a-d), this term is presented concisely as

c . Thus, we attempt to transform (A.1,2) Into a form such as (29), (30a d)

First, we use equation (9'); the decomposition of a vector Into two orthogonal

constituents as in the step leading to equation (24); and the identity (28):

*c .c . c .C c
6i *8 p e *6X X f6X (6X *

-12-12 12 -X12 -12 -12" )e]

kC 
C

-12 12, i-12,n' x12

As a result, we can already extract the term c from (A l):
I kI

C1  = 2(pC) -  X12,n' 6X12 (A.3)

After this extraction, only the third term remains inside the second pair

of brackets in (A.1); it contains 6e, which is also featured by the term

following the basic term in (A.1). Before proceeding further, we give 6e a form

more convenient than (A.2). In utilizing (9) in (A.2), we have

51. (pC)-1[mX12 (-X12 - _

The expression inside the brackets is that referenced in the preceding paragraph

with regard to the decomposition of a vector. It thus follows immediately that

6e - (pc)-I (12,n (A.4)

This relation could have been transcribed directly from (24).

Next, we express the second term on the right-hand side of (A.I). We use

(A.4) as well as the identity (28) and the three lines following it-

c-c . = (c) -I c .6X
X12.6e (p) 12 -12,n X12,n -12

Thus, the desired term is

2- 1I2,n -12 (A.)

To express the third term on the right-hand side of (A.l), we use equation

(9'); the notion of a vector decomposition Uttilized already twice above, and

equation (28'):
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1 1 2 *2 .c c .c ccfX1 2  (pc = _2[XC2 (XI*e )ec]

-12 --12*-12 (12* - )

.c .c *c 2
-12 _12,n _12,n

Thus, the desired term is

c3 = (Pc)-2 lc 2 ec.Vx (A.6)
3 --12, n e ~ 12 .(A)

The remaining term (besides the basic term) on the right-hand side of (A.1)

is that mentioned earlier, namely the last term inside the second brackets. To

give it a more concise form avoiding the explicit presence of be, we express the

latter from (A.4), and use the identity (28) and the three lines following it:

S*.6e  Qp)- "c '6 (QC -I "C
e -1212 12,n -12,n -12

Thus, the desired term is

c -c *cc 4  -2(pc) c PX *(n.X1  (A.7)12,n -12

We are now in a position to write (A.1,2) in a convenient form as follows:

C

5p -- U 12. t. c 1  I "2  * c3  + C (A.8)

where the terms c1I c 2 3  and c4 are given respectively by (A.3,5,6,7). This

is pecisly the final formulation (29), (30a d). Although the formal algebraic

derivation resulting in (A.1,2) is short and straightforward by comparison with

the geometric considerations in Chapters 2 5, the system (A.1,2) is seen to be

far from final. Its transformation, carried out with the aid of relations from

Chapters 3 and 5, is lengthier than the derivation of the system (A.1,2) itself.

The final formulation above has two basic features. The first feature is

thdrt every term on the right-hand side of (A.8) has an easy geometrical

interpretation, and is quite concise and tractable. The term c1 depends on

A 12' whereas c2 , c 3 . and c4 all depend on 6X12 and can be grouped together if

convenient. And the second feature is that the term c 1 has been shown in

Chapter 6 to be very significant and in general much greater than the combined

term (,-rc .C ), which, in many applications, may be negligible. Thus, a
2 3 .4

sufficiently accurate yet easily manageable formulation appears to be

60,- C.6x 2(p') I c' .x (A.9)
L 12 -12,n* -12
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